Microbial production of next-generation stevia sweeteners
نویسندگان
چکیده
BACKGROUND The glucosyltransferase UGT76G1 from Stevia rebaudiana is a chameleon enzyme in the targeted biosynthesis of the next-generation premium stevia sweeteners, rebaudioside D (Reb D) and rebaudioside M (Reb M). These steviol glucosides carry five and six glucose units, respectively, and have low sweetness thresholds, high maximum sweet intensities and exhibit a greatly reduced lingering bitter taste compared to stevioside and rebaudioside A, the most abundant steviol glucosides in the leaves of Stevia rebaudiana. RESULTS In the metabolic glycosylation grid leading to production of Reb D and Reb M, UGT76G1 was found to catalyze eight different reactions all involving 1,3-glucosylation of steviol C 13- and C 19-bound glucoses. Four of these reactions lead to Reb D and Reb M while the other four result in formation of side-products unwanted for production. In this work, side-product formation was reduced by targeted optimization of UGT76G1 towards 1,3 glucosylation of steviol glucosides that are already 1,2-diglucosylated. The optimization of UGT76G1 was based on homology modelling, which enabled identification of key target amino acids present in the substrate-binding pocket. These residues were then subjected to site-saturation mutagenesis and a mutant library containing a total of 1748 UGT76G1 variants was screened for increased accumulation of Reb D or M, as well as for decreased accumulation of side-products. This screen was performed in a Saccharomyces cerevisiae strain expressing all enzymes in the rebaudioside biosynthesis pathway except for UGT76G1. CONCLUSIONS Screening of the mutant library identified mutations with positive impact on the accumulation of Reb D and Reb M. The effect of the introduced mutations on other reactions in the metabolic grid was characterized. This screen made it possible to identify variants, such as UGT76G1Thr146Gly and UGT76G1His155Leu, which diminished accumulation of unwanted side-products and gave increased specific accumulation of the desired Reb D or Reb M sweeteners. This improvement in a key enzyme of the Stevia sweetener biosynthesis pathway represents a significant step towards the commercial production of next-generation stevia sweeteners.
منابع مشابه
Stevia and saccharin preferences in rats and mice.
Use of natural noncaloric sweeteners in commercial foods and beverages has expanded recently to include compounds from the plant Stevia rebaudiana. Little is known about the responses of rodents, the animal models for many studies of taste systems and food intake, to stevia sweeteners. In the present experiments, preferences of female Sprague-Dawley rats and C57BL/6J mice for different stevia p...
متن کاملStevia, Nature’s Zero-Calorie Sustainable Sweetener
Stevia is a plant native to South America that has been used as a sweetener for hundreds of years. Today, zero-calorie stevia, as high-purity stevia leaf extract, is being used globally to reduce energy and added sugar content in foods and beverages. This article introduces stevia, explaining its sustainable production, metabolism in the body, safety assessment, and use in foods and drinks to a...
متن کاملStevia, Nature’s Zero-Calorie Sustainable Sweetener A New Player in the Fight Against Obesity
Stevia is a plant native to SouthAmerica that hasbeenusedas a sweetener for hundreds of years. Today, zero-calorie stevia, as high-purity stevia leaf extract, is being used globally to reduce energy and added sugar content in foods and beverages. This article introduces stevia, explaining its sustainable production,metabolism in thebody, safety assessment, and use in foods and drinks to assist ...
متن کاملIn vitro bioassay investigations of the endocrine disrupting potential of steviol glycosides and their metabolite steviol, components of the natural sweetener Stevia.
The food industry is moving towards the use of natural sweeteners such as those produced by Stevia rebaudiana due to the number of health and safety concerns surrounding artificial sweeteners. Despite the fact that these sweeteners are natural; they cannot be assumed safe. Steviol glycosides have a steroidal structure and therefore may have the potential to act as an endocrine disruptor in the ...
متن کاملA Review on Potential Toxicity of Artificial Sweetners vs Safety of Stevia: A Natural Bio-Sweetner
Artificial sweeteners have increasingly become an area of controversy in the world of food and nutrition. Consumers are oftenly barraged with a number of contradictory opinions and reports regarding the safety and efficacy of sweeteners. Artificial sweetener consumption may cause migraines or headache, skin eruptions, muscle dysfunction, depression, weight gain, liver and kidney effects, multip...
متن کامل